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Fig. 1(left): Great spotted woodpecker on the left and the Eurasian Hoopoe on 

the right; Fig. 1(right): Woodpecker’s head and skull bones on the left (a,c) 

and Hoopoe’s head and skull bone on the right (b,d) (from Ref [2] ). 

 

1 Objectives and Significance 

Protection of humans, equipment and machinery from large amplitude, noisy, finite time perturbations is 

an important area of basic and applied research that has been pursued for many decades. It is hence of 

significant interest to learn about the underlying mechanisms that may someday allow us to develop thin, 

strong and light mass materials for purposes of protection from impacts [1]. Can we then make materials 

which would be very thin, very light, non-brittle and at the same time capable of damping sudden large 

changes in acceleration? While developing such materials has been a challenging journey, woodpeckers 

provide an example of 

what may someday be 

possible! Typically, 

woodpeckers peck on 

wood about 20-22 times 

per second. Such rapid 

impacts can result in 

acceleration changes 

that are ~ 1200g [3].  

However, they don’t get 

brain damage! An 

acceleration change of 

1200g is a good order 

of magnitude larger 

than the protection that the best helmets can provide [4, 5]. Studies show that the woodpecker skulls are 

thin and lightweight and have almost no bulk fluids (Fig. 1) [3, 6, 7]. Their skulls also have a dense plate-

like structure and have low porosity [2]. How exactly these skulls absorb such large acceleration changes 

is presently unclear. 

Of course, one way to develop such materials would be to mimic the woodpecker skull itself. But that is 

not easy to do. Here we choose to pursue a somewhat different path, an “out-of-the-box” idea, of 

capturing the incoming energy in pockets all over a dense network of tiny micro-electro-mechanical 

(MEM) cantilevers [1, 8, 9]. If a single cantilever can be made to temporarily absorb a good fraction of 

the incoming energy then one can imagine each cantilever as an “edge” or a bond, where each bond is a 

link in a network (see Fig. 2), much like in bones.  The idea of using MEM cantilevers as possible impact 

absorbers builds on the rapid developments that have transpired in nonlinear dynamics over last some 

sixty years or so [10, 11]. The use of MEM cantilevers for possibly capturing incoming energy originates 

from the experimental and simulational studies by Sievers and coworkers [12]. Will the idea work? In the 

following sections we build a plan to explore that question. If the idea eventually works out, one may 

someday be able to make very light, small, impact absorbing materials which can be very useful. 

As we shall discuss in some detail below, the presence of strongly nonlinear forces in many particle 

systems can result in unexpected ways of energy transport in the system [13]. In other words, in strongly 

nonlinear systems, energy may not quite disperse as it would in a chain of harmonic oscillators [10, 13-

15].  
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These systems typically allow the existence of solitary waves, and anti-

solitary waves, which are uniformly propagating, non-dispersive 

compression and dilation pulses, respectively [16-23]. In addition, these 

systems admit intrinsic localized modes (ILMs) or breathers [8, 12, 15-

18, 20, 22, 24-50], which are typically regions in the system where 

energy can get temporarily trapped, sometimes for rather long times 

compared to typical system relaxation time scales. It is this energy 

localization property, the one associated with the ILMs or breathers that 

seem to be especially germane in the context of harnessing incoming 

energy in parts of a system such as in Fig.2. If the breather can be 

harnessed for a sufficiently long time, the energy can slowly dissipate 

via formation of hot regions or via some local damage. The energy can 

also presumably drain through some filler material that can be placed 

in the porous space of the network in such a way that very little energy 

penetrates the entire network, thus serving our purpose.  

The broad based basic research question to address then is whether the MEM cantilevers can be 

designed to rapidly capture large amplitude noisy signals into one or more highly stable energetic 

breathers. Experimental and simulational studies carried out by Sievers and coworkers [1, 8, 9, 38, 51-

56] suggest that a fairly narrow distribution of driving frequencies across the right frequency window 

effected across finite times can indeed precipitate multiple breathers in MEM cantilever systems [1, 38, 

53, 55]. Preliminary studies completed by us also confirm these findings and go beyond. Indeed the 

studies suggest that it would be promising to explore whether some form of MEM cantilever systems can 

actually be tuned up to trap breathers when subjected to random perturbations. One can then ask whether 

and how such breathers can be effected in various MEM cantilevers of a network of cantilevers such 

as shown in Fig. 2. The completed study is described in Sec. 3. 

2 Background  

The study of breathers began with the early works of Sievers and coworkers in the mid 1960s [12, 24, 57-

60] and of others such as Maki and Takayama [40], Ovchinnikov [14], Stoll, Schneider and Bishop [15], 

and of Bishop [41, 61-66], Campbell and coworkers [11, 41, 61, 67] and others through the 70s. It 

appears that extensive analyses of breathers or ILMs by a great many research groups started with the 

works of Flytzanis, Pvenmatikos and Remoissenet [16], 

Sievers and Sato and Sievers and coworkers [1, 8, 9, 38, 51-

56, 68]. Since the 1990s, a vast body of literature has emerged 

with investigations under way in a great many distinguished 

groups around the world. Since the community of researchers 

comes from mathematics, physics, and engineering, a variety 

of different kinds of studies are found, which has made the 

exploration of breathers rich and interesting. But to get a better 

sense of what kind of objects these breathers are, perhaps it is 

good to first back up a bit and trace out the threads that caught 

the attention of so many scientist on long lived excitations in 

Fig. 2: A generic bone network 

is shown. This picture is taken 

from the following URL - 

http://www.lencoheaven.net/for

um/index.php?topic=11143.0 

Fig. 3: Masses connected by springs 

being given a simultaneous 

compression and dilation at time t = 0. 

Figure taken from 

http://www.scholarpedia.org/article/F

ermi-Pasta-

Ulam_nonlinear_lattice_oscillations.  
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nonlinear systems in the first place. 

Studies of nonlinear many body systems began in earnest with the studies of Fermi, Pasta and Ulam (Fig. 

3,4) and the scientist who did the 

computations they envisioned, Betty 

Tsingou, in the Los Alamos MANIAC-1 

(Mathematical analyzer, numerical 

integrator and computer) in 1955. They 

found that the presence of nonlinear 

spring like forces in a mass-spring 

chain held between rigid boundaries 

can result in a lack of thermalization of 

the system.  

Later, in 1965, Zabusky and Kruskal [13, 

69] analyzed the Fermi, Pasta, Ulam and 

Tsingou (FPUT) system in the 

continuum limit via the Korteweg-

deVries equation [69] and showed that 

these systems support solitary waves, 

which are propagating, non-dispersive 

bundles of energy. The Korteweg 

deVries equation, a nonlinear equation 

that is known to describe solitary waves 

in narrow, shallow and long channels, 

was solved in 1895.  

It should be mentioned here that the study of 

nonlinear equations may have originated with the 

desire to understand the origins of rogue waves 

which were perceived to be dangerous during the 

great ocean voyages starting in the Late Middle 

Ages (13
th
 century) [68]. Some of the most well-

known mathematicians and physicists in the 

history of science, engineering and mathematics 

participated in the studies that eventually led up 

to the works of Korteweg and de Vries and of 

others (see Fig. 5) [69]. Hence, large amplitude 

fluctuations (presumably rogue waves), traveling 

non-dispersive energy bundles (solitary and anti-

solitary waves) and localized energy pockets (breathers) and a surprisingly rich mix of interactions of 

these objects are encountered in many strongly nonlinear systems. These objects hence seem to show up 

in pretty much all the nonlinear equations that describe discrete many body or continuum systems. 

Fig.5: Slide showing the names and years in which 

historic advances were made in understanding 

nonlinear waves 

Fig 4: The above snapshot is from the original unpublished 

report of FPUT (whose name appears later). We discuss the 

system described by Eq. (2) on the page. Note the right hand 

side of Eqs (1) and (2) are actually second derivatives of xi 
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Sievers and Takeno’s 1988 [12] work along with 

the preceding studies established that localized high 

frequency modes that are above the phonon 

frequencies and separated by a gap can exist. These 

vibrations are the intrinsic localized modes (ILMs) 

or breathers. Breathers can arise in the presence of 

very small proportions of impurities and at finite 

temperatures. Alternately, breathers are seen in 

pristine mass distributions and in three dimensional 

lattices without impurities (such as NaI) and in 

biological molecules [70].  

Clearly, the whole idea of having some localized 

and long lived excitations among lattice vibrations 

raises intriguing questions that may require many 

years to answer. Let us not forget the FPUT system 

is already 59 years old and is the starting point of 

modern nonlinear many body work [71]. To 

achieve our present goal, i.e., to understand under 

what conditions energetic breathers can form and 

can stay localized for desired times, we need to 

broadly understand how the relevant system 

evolves for various forms of initial and boundary 

conditions and for various values of the parameters. 

We will present a brief overview of the past efforts 

below.  

The works of MacKay [35, 36, 44, 49, 72-76], 

Malomed [22, 23, 77-91], Flach [11, 47, 49, 50, 92-

103], Rosenau [30, 45], Kivshar [11, 18, 19, 29, 30, 

67, 104-111], Peyrard [36, 37, 43, 47, 77, 112-117], 

Dauxois [42, 43, 112, 113, 115, 118], Ruffo [118, 

119], Willis [50, 92, 93, 112, 113], Aubry [35, 44, 

46, 72, 101, 120-127], Kiselev [27, 31, 70, 128-

130], Page [28, 32, 131], Livi [74, 132], Cretegny 

[95, 118, 124, 126, 133], James [134, 135], 

Lindenberg [136], Kevrekidis [117, 133, 137], Konotop [138-140], and their coworkers along with the 

works of Sievers, Takeno and Sato [1, 8, 9, 38, 51-56, 68], Bishop [41, 61-66], Campbell [11, 41, 61, 67, 

137], Porter [137], Daraio and coworkers [137] and others continue to shape the landscape of 

understanding of breathers in the broader context for discrete and continuum systems since the 1990s or 

so. The focus on the MEM cantilever systems began around 2003. This system may be particularly 

important for the present study (see Fig. 6,7). The works of Sato, Hubbard, Sievers and several others 

have shaped our present understanding of the MEM cantilever system. 

Fig. 6: The MEM cantilevers with two 

different overhang lengths relating to a 

diatomic lattice is shown (taken from Sato et 

al, [1] 

Fig.7: Taken from Sato et al.[1], the sample 

is driven by a piezo-electric transducer and 

the excitations are probed by a HeNe laser. 

The image from a highly excited cantilever 

will most likely miss the CCD camera and 

produce a dark spot. 
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The system in Figs. 6,7 is set up in such a way that the cantilevers oscillate perpendicular to the plane of 

the MEM cantilever system. However, it is possible to show that effectively the dynamics is effectively 1 

dimensional (hence the equation used by Sato et al in Fig. 8). The 

masses (~10
-13
 kg) interact with each other effectively via a 

quadratic and a quartic potential. The masses also experience 

inter-site quadratic and quartic potentials as well as on-site 

quadratic and quartic potentials. The quartic interactions are 

significantly stronger in both on-site and inter-site cases. We will 

refer to this system henceforth as the Sievers system. The 

experimental set up (Fig. 7) describes the way in which the system 

is initiated. The system is driven via a driver through a range of 

frequencies where it is likely to pick up oscillations at frequencies 

above the phonon band or in a gap. The right frequencies and 

driving along with specific excitations across selected windows 

can precipitate breathers. The breathers once formed would be 

unable to relax easily by coupling with the phonon band. And it is the nature of the couplings that would 

be important in deciding the lifetime of the breather. Of course the experimental system has dissipation. 

Eventually all energy would die out.
1
  

Sato and coworkers did both experiments and simulations to see the emergence of the breathers upon 

chirping the otherwise driven system in a window around the optic branch (~140kHz) frequency for some 

16 ms (Figs. 9, 10). The driving itself continued for times which are nearly 3 times longer. The system 

showed that the driving precipitated breathers. Some of these breathers were strong and lasted for some 

20ms or so (a rather long time here). A snapshot of the experimental and simulational data of Sato et al is 

                                                           
1
 The author acknowledges helpful discussions with Prof A.J. Sievers at various stages of his study on 

breathers. 

Fig.8: The effective nonlinear 

equation experimentally and 

simulationally probed by Sato et 

al. [1] 

 

Fig 9: The parameters used in studying the equations in Fig. 7 are given above. The Table is from Sato 

et al. [1]. A little introspection shows that the natural units to describe this system is nanograms, microns 

and microseconds 
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shown in Ref. [1]. It is also known that frequencies seen in nonlinear systems are strongly dependent on 

perturbation amplitudes and hence perturbation energies. Thus, if one understands enough about how to 

design and control the dynamics of these types of systems (may not be exactly the same systems as those 

of Sievers et al.), then it  may be possible to actually trap breathers from noisy large amplitude 

perturbations and hold them long enough for them to decay before they disperse. This realization inspires 

us to propose the study below. While the idea may seem rather far-fetched, our pilot work suggests a 

strong chance of success. 

3 Research Accomplished 

3.1. The systems: 

Clearly, considerable attention has been paid to how breathers form in the FPUT system, the Sievers 

system and other systems. We are interested in breathers for the purposes of making light, small, and 

highly efficient impact absorption systems.  To this end, the overall objective here is to determine the 

following in a single 1D system. What range of values of α and β, for what kinds of perturbation 

amplitudes over time and for what mass distributions will be best for generating multiple stable and 

energetic breathers?  

 

We would also like to understand why a set of parameter ranges would work. And in the future to be able 

to go deeper into the equations to get the big picture of the dynamics as functions of the 5 parameters 

stated above.  By “energetic” we mean one or more breathers that carry roughly ~ 60+% or so of the total 

energy imparted to initiate motion in the system.  

 

The equation of motion for any particle in the FPUT system and the same for the Sievers’ system differ 

due to the presence of the on-site terms. These terms are present only in the Sievers system. The next 

important point to note is that the Sievers system appears to have extremely strong quartic interactions at 

the on-site and inter-site terms compared to the same in the corresponding quadratic terms (see Table in 

Fig. 9). However, these interaction strengths have thus far been seen in standard SI units. For a system of 

size ~ 10
2
 microns, total mass ~10

-9
 gms, with excitations in the kHz regime (see Fig. 9), SI units may not 

be the most useful to develop some insights into the dynamics. If one looks at the Sievers system using 

nanogram, micron and microseconds as the units of mass, length and time, respectively, the quadratic on-

site and inter-site couplings are about the same strength. The quadratic inter-site coupling turns out to be 

an order of magnitude stronger than the quartic inter-site coupling. The quadratic on-site coupling works 

out to three orders of magnitude stronger than the quartic on-site term. Thus, in these “natural” units, the 

quartic couplings look relatively weak in the Sievers system. Our studies suggest that the parameter 

ranges accessed in the Sievers studies may not be the best window to search for parameters that would 

serve our needs and this observation. Thus a broad based understanding of breather formation is 

needed.  

A second important factor is the amplitude of the perturbation that initiates the system. If this is weak 

compared to the amplitude of typical gentle vibrations of particles, then strong nonlinear forces may not 

kick in early and their effects may be evident only after carefully tuned driving at late times. However, if 

the perturbations are somehow strong, even with weak quartic couplings, strongly nonlinear effects may 

enter early. However, how much of linearity and nonlinearity are needed is not clear and this needs to be 

sorted out in detail. For now we will ignore dissipation though we have done pilot work on driven 
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dissipative versions of these systems. We will take dissipation into account later and this turns out to be 

straightforward to do in dynamical simulations. Below we describe the pilot level work we have done and 

then describe the specific task items we will pursue to accomplish our objectives. 

Task 1: A model system with its corresponding Newtonian dynamical equations will 

be set up to describe a one dimensional chain of quadratic + quartic oscillators 

which are connected by harmonic springs and then the system will be mapped to a 

corresponding MEM cantilever array in the manner shown by Sievers and 

coworkers (2003). 

Though in the experiments on the Sievers’ system, the driven dissipative configuration 

precipitated multiple breathers, our 

results suggested that the driving 

may have been the crucial factor in 

precipitation of the breathers. The 

Sievers’s simulations do not provide 

any details and hence we were 

unable to specifically recover his 

simulations though our work is in 

overall agreement with those of 

Sievers and coworkers.  

Our study thus far has been broad 

based. We focused on understanding 

the dynamical properties of the 

breathers in these systems. If one 

understands what makes them 

metastable and unstable, it should be 

possible to construct the right kind 

of systems and conditions to realize energetic 

breathers that we would like to make for our 

purposes. With this in mind we considered 

monodispersed chains with � = 100 masses 

and with the end masses being connected to 

infinitely heavy walls (Fig. 10). We 

considered two kinds of scenarios for both the 

FPUT and the Sievers systems – seeded 

breathers and unseeded breathers. Our 

studies on each of these are addressed below. 

Fig.10: (a), (b), (c) and (d) show breathers in the FPUT system 

for � = 0, � = 1, � = 10�	, � = 1, � = 10�
, � = 1 and 

� = 1, � = 1, respectively. Dark line shows increased energy 

Fig.11: Dependence of breather lifetime on 

perturbation amplitude for � = 0, � = 1. 
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We will first talk about seeded breathers in the FPUT systems. In studying seeded breathers, at 

time � = 0, a breather was initiated by stretching a bond at the center of the chain. In studying 

unseeded breathers, we subjected the equal masses in the system to random perturbations at 

� = 0. Seeding always produced breathers that were highly stable for a significant amount of 

time (Fig. 11), with breather lifetimes becoming large enough to become intractable in 

computational studies when � > 0.3, � = 1 and for sufficiently small perturbation amplitudes. 

Further the breathers carried about 95% of the total system energy until breakdown after many 

decades in time – hence these 

were the strong and energetic 

breathers we were looking for. 

Clearly for device purposes, it 

would be desirable to have 

systems in which 

perturbations can somehow 

seed breathers perhaps by 

straining the systems initially 

and letting the strains be 

released by the impact. As for 

breathers in unseeded 

systems, they were much 

harder to generate out of 

random perturbations in 

uniform mass systems. The 

studies we have done for the 

FPUT problem suggest that 

there are windows of 

parameter values for which 

breathers spontaneously form 

out of random perturbations 

initiated at � = 0 and without 

any extended driving (Fig. 

12). This is what we want for 

impact absorption purposes. 

Impulses seldom behave like 

protracted driven signals at 

fixed frequencies. It has been 

difficult to precipitate 

breathers in the Sievers 

system from such random 

initial perturbations, however. 

Fig.12: (upper) Circled green regions show breather formation in an 

FPUT system when it is perturbed at � = 0 with random spring 

displacements (amplitude � = ±0.2, 1 being the bond length). All 

masses are the same; (middle) region where breathers emerge when 

random velocity perturbations are given to a monodispersed system; 

(c) breather formation when masses are uniformly randomly 

distributed between two limits, 0.5 and 1.5 and weak velocity 

perturbation with initial velocities between +0.1 and -0.1 are used. 

Yellow regions contain solitary waves and the pink regions are very 

noisy quasi-equilibrium phases. 
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Fig.13: A typical random distribution of 

masses shown in a Sievers system study. 

Fig.14: Here we show the formation of extremely stable breathers in a driven Sievers system with the 

mass distribution shown in Fig.11. Sievers’ parameters for a diatomic chain are otherwise used. However, 

we would like to explore systems where breathers are initiated by just about any form of perturbation and 

not such specific kinds of perturbations. 

Breathers precipitated from random perturbations have typically turned out to carry less than 

15% of the energy, and hence are not quite acceptable for highly effective impact absorption 

applications. 

Task 2: The bimodal and related systems with two or three different masses in each 

unit cell will be perturbed at every site using random velocities at one initial instant 

and then through a time interval. These nonlinear chains have not been exhaustively 

probed to our knowledge using such broadband excitations. The dynamics of the 

system will be probed using the velocity Verlet algorithm and with dissipation. The 

principal objective would be to determine the conditions under which such broadband 

excitations can precipitate intrinsic localized modes. 

We have done extensive work on the Sievers system 

with randomly distributed masses between two limits 

(Fig. 13). Hence, these systems are disordered bimodal 

systems. Work done so far strongly indicates that 

bimodal or random mass systems are capable of 

precipitating moderately strong breathers starting from 

random perturbations at � = 0 (Fig. 14). We find that 

it is indeed possible to precipitate strong breathers in 

impurity sites in these systems. Our studies have been 

done for systems which have been preferentially 

driven at certain frequency windows as done by 

Sievers et al. We have studied these systems both without dissipation and with dissipation. 

Task 3: Finally, step (i) will comprise of a check on the robustness of the dynamics for 

different inertial mismatches. In this stage, the inertial mismatches between the two 

cantilevers in a unit cell (see Fig 1) will be varied and also the role of small 

fluctuations in these masses will be explored. 
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Fig.15: Here we show the Hamiltonian used for 

setting up a “y” shaped structure (see below). 

Each branch is “on-rails” with a vertex particle 

linking the rails. Every particle is linked by an 

FPUT potential. 

Fig.16: (Left) A system of three FPUT chains that are linked with a vertex particle defines the “Y” shaped 

system. This system is the building block for making networks of cantilevers. (Right) Here mechanical 

energy transmission � is shown where � is proportion of the energy in the horizontal stem that passes on 

to an adjacent branch. Cases where the potential is strongly harmonic and where it is strongly nonlinear 

have been probed. The results clearly show that non-linear potentials allow transmission of more energy 

when the angle  � is not very large (see Figs). 

Due to all the challenges associated with the problem of precipitating breathers, we deemed it 

premature to try to make breathers in a system of two or more cantilever units. However, we 

have carried out studies to see how mechanical energy is transmitted through a “Y” shaped 

structure by initiating a velocity perturbation at 

a point in an FPUT chain and seeing how this 

perturbation propagates to different branches. 

The studies were done for strongly nonlinear 

cases and for strongly linear cases (Fig. 15). 

Our studies show that the strongly nonlinear 

“Y” shaped structures and trees made of 

iterations of such “Y” shaped structures are 

capable of better transmission of energy from 

the stem to the breathers created at each of these structures interact have not yet been probed 

(Fig. 16). 

Additional/related work 

Following additional/related studies have been carried out in order to develop broad insights into 

the FPUT and Sievers problems.  

1. The PI has carried out an analyses of the nature of large energy fluctuations in these systems 

and linked them with the well-known studies on rogue waves in the deep ocean that are probed 

using the nonlinear Schrodinger equation. 
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2. The PI has carried out a detailed study of how a nonlinear system of the FPU type evolves 

when two ends of the system have different dynamical properties. The study shows that under 

certain conditions, at late enough times ergodicity is achieved. 

3. The PI has led a study in which interactions between colliding nanoparticles have been 

studied. Though apparently unrelated, this study was designed to understand whether interactions 

between particles in the smallest scales are profoundly affected by the size itself. 

4. Next Steps  

We are looking forward to continued progress in using dynamical simulations as a guide to 

future experiments on how to trap incoming energy as breathers in FPUT and Sievers type 

systems. Our goal is to convert noisy perturbations into breathers. And we also want to seek out 

systems that may be potentially capable of converting low frequency and large amplitude 

perturbations into breathers. To this end, deeper exploration of the parameter space is needed. 

Further, studies on 2D and 3D network systems are needed and we look forward to doing such 

studies in the immediate future. 
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